\(\int \frac {(d \sec (e+f x))^{7/2}}{a+b \tan (e+f x)} \, dx\) [603]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (warning: unable to verify)
   Maple [B] (warning: unable to verify)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 456 \[ \int \frac {(d \sec (e+f x))^{7/2}}{a+b \tan (e+f x)} \, dx=\frac {2 d^2 (d \sec (e+f x))^{3/2}}{3 b f}+\frac {\left (a^2+b^2\right )^{3/4} d^2 \arctan \left (\frac {\sqrt {b} \sqrt [4]{\sec ^2(e+f x)}}{\sqrt [4]{a^2+b^2}}\right ) (d \sec (e+f x))^{3/2}}{b^{5/2} f \sec ^2(e+f x)^{3/4}}-\frac {\left (a^2+b^2\right )^{3/4} d^2 \text {arctanh}\left (\frac {\sqrt {b} \sqrt [4]{\sec ^2(e+f x)}}{\sqrt [4]{a^2+b^2}}\right ) (d \sec (e+f x))^{3/2}}{b^{5/2} f \sec ^2(e+f x)^{3/4}}+\frac {2 a d^2 E\left (\left .\frac {1}{2} \arctan (\tan (e+f x))\right |2\right ) (d \sec (e+f x))^{3/2}}{b^2 f \sec ^2(e+f x)^{3/4}}-\frac {2 a d^2 \cos (e+f x) (d \sec (e+f x))^{3/2} \sin (e+f x)}{b^2 f}-\frac {a \sqrt {a^2+b^2} d^2 \cot (e+f x) \operatorname {EllipticPi}\left (-\frac {b}{\sqrt {a^2+b^2}},\arcsin \left (\sqrt [4]{\sec ^2(e+f x)}\right ),-1\right ) (d \sec (e+f x))^{3/2} \sqrt {-\tan ^2(e+f x)}}{b^3 f \sec ^2(e+f x)^{3/4}}+\frac {a \sqrt {a^2+b^2} d^2 \cot (e+f x) \operatorname {EllipticPi}\left (\frac {b}{\sqrt {a^2+b^2}},\arcsin \left (\sqrt [4]{\sec ^2(e+f x)}\right ),-1\right ) (d \sec (e+f x))^{3/2} \sqrt {-\tan ^2(e+f x)}}{b^3 f \sec ^2(e+f x)^{3/4}} \]

[Out]

2/3*d^2*(d*sec(f*x+e))^(3/2)/b/f+(a^2+b^2)^(3/4)*d^2*arctan((sec(f*x+e)^2)^(1/4)*b^(1/2)/(a^2+b^2)^(1/4))*(d*s
ec(f*x+e))^(3/2)/b^(5/2)/f/(sec(f*x+e)^2)^(3/4)-(a^2+b^2)^(3/4)*d^2*arctanh((sec(f*x+e)^2)^(1/4)*b^(1/2)/(a^2+
b^2)^(1/4))*(d*sec(f*x+e))^(3/2)/b^(5/2)/f/(sec(f*x+e)^2)^(3/4)+2*a*d^2*(cos(1/2*arctan(tan(f*x+e)))^2)^(1/2)/
cos(1/2*arctan(tan(f*x+e)))*EllipticE(sin(1/2*arctan(tan(f*x+e))),2^(1/2))*(d*sec(f*x+e))^(3/2)/b^2/f/(sec(f*x
+e)^2)^(3/4)-2*a*d^2*cos(f*x+e)*(d*sec(f*x+e))^(3/2)*sin(f*x+e)/b^2/f-a*d^2*cot(f*x+e)*EllipticPi((sec(f*x+e)^
2)^(1/4),-b/(a^2+b^2)^(1/2),I)*(d*sec(f*x+e))^(3/2)*(a^2+b^2)^(1/2)*(-tan(f*x+e)^2)^(1/2)/b^3/f/(sec(f*x+e)^2)
^(3/4)+a*d^2*cot(f*x+e)*EllipticPi((sec(f*x+e)^2)^(1/4),b/(a^2+b^2)^(1/2),I)*(d*sec(f*x+e))^(3/2)*(a^2+b^2)^(1
/2)*(-tan(f*x+e)^2)^(1/2)/b^3/f/(sec(f*x+e)^2)^(3/4)

Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 456, normalized size of antiderivative = 1.00, number of steps used = 17, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {3593, 749, 858, 233, 202, 760, 408, 504, 1227, 551, 455, 65, 304, 211, 214} \[ \int \frac {(d \sec (e+f x))^{7/2}}{a+b \tan (e+f x)} \, dx=-\frac {a d^2 \sqrt {a^2+b^2} \sqrt {-\tan ^2(e+f x)} \cot (e+f x) (d \sec (e+f x))^{3/2} \operatorname {EllipticPi}\left (-\frac {b}{\sqrt {a^2+b^2}},\arcsin \left (\sqrt [4]{\sec ^2(e+f x)}\right ),-1\right )}{b^3 f \sec ^2(e+f x)^{3/4}}+\frac {a d^2 \sqrt {a^2+b^2} \sqrt {-\tan ^2(e+f x)} \cot (e+f x) (d \sec (e+f x))^{3/2} \operatorname {EllipticPi}\left (\frac {b}{\sqrt {a^2+b^2}},\arcsin \left (\sqrt [4]{\sec ^2(e+f x)}\right ),-1\right )}{b^3 f \sec ^2(e+f x)^{3/4}}+\frac {d^2 \left (a^2+b^2\right )^{3/4} (d \sec (e+f x))^{3/2} \arctan \left (\frac {\sqrt {b} \sqrt [4]{\sec ^2(e+f x)}}{\sqrt [4]{a^2+b^2}}\right )}{b^{5/2} f \sec ^2(e+f x)^{3/4}}-\frac {d^2 \left (a^2+b^2\right )^{3/4} (d \sec (e+f x))^{3/2} \text {arctanh}\left (\frac {\sqrt {b} \sqrt [4]{\sec ^2(e+f x)}}{\sqrt [4]{a^2+b^2}}\right )}{b^{5/2} f \sec ^2(e+f x)^{3/4}}+\frac {2 a d^2 (d \sec (e+f x))^{3/2} E\left (\left .\frac {1}{2} \arctan (\tan (e+f x))\right |2\right )}{b^2 f \sec ^2(e+f x)^{3/4}}-\frac {2 a d^2 \sin (e+f x) \cos (e+f x) (d \sec (e+f x))^{3/2}}{b^2 f}+\frac {2 d^2 (d \sec (e+f x))^{3/2}}{3 b f} \]

[In]

Int[(d*Sec[e + f*x])^(7/2)/(a + b*Tan[e + f*x]),x]

[Out]

(2*d^2*(d*Sec[e + f*x])^(3/2))/(3*b*f) + ((a^2 + b^2)^(3/4)*d^2*ArcTan[(Sqrt[b]*(Sec[e + f*x]^2)^(1/4))/(a^2 +
 b^2)^(1/4)]*(d*Sec[e + f*x])^(3/2))/(b^(5/2)*f*(Sec[e + f*x]^2)^(3/4)) - ((a^2 + b^2)^(3/4)*d^2*ArcTanh[(Sqrt
[b]*(Sec[e + f*x]^2)^(1/4))/(a^2 + b^2)^(1/4)]*(d*Sec[e + f*x])^(3/2))/(b^(5/2)*f*(Sec[e + f*x]^2)^(3/4)) + (2
*a*d^2*EllipticE[ArcTan[Tan[e + f*x]]/2, 2]*(d*Sec[e + f*x])^(3/2))/(b^2*f*(Sec[e + f*x]^2)^(3/4)) - (2*a*d^2*
Cos[e + f*x]*(d*Sec[e + f*x])^(3/2)*Sin[e + f*x])/(b^2*f) - (a*Sqrt[a^2 + b^2]*d^2*Cot[e + f*x]*EllipticPi[-(b
/Sqrt[a^2 + b^2]), ArcSin[(Sec[e + f*x]^2)^(1/4)], -1]*(d*Sec[e + f*x])^(3/2)*Sqrt[-Tan[e + f*x]^2])/(b^3*f*(S
ec[e + f*x]^2)^(3/4)) + (a*Sqrt[a^2 + b^2]*d^2*Cot[e + f*x]*EllipticPi[b/Sqrt[a^2 + b^2], ArcSin[(Sec[e + f*x]
^2)^(1/4)], -1]*(d*Sec[e + f*x])^(3/2)*Sqrt[-Tan[e + f*x]^2])/(b^3*f*(Sec[e + f*x]^2)^(3/4))

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 202

Int[((a_) + (b_.)*(x_)^2)^(-5/4), x_Symbol] :> Simp[(2/(a^(5/4)*Rt[b/a, 2]))*EllipticE[(1/2)*ArcTan[Rt[b/a, 2]
*x], 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 233

Int[((a_) + (b_.)*(x_)^2)^(-1/4), x_Symbol] :> Simp[2*(x/(a + b*x^2)^(1/4)), x] - Dist[a, Int[1/(a + b*x^2)^(5
/4), x], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rule 304

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !
GtQ[a/b, 0]

Rule 408

Int[1/(((a_) + (b_.)*(x_)^2)^(1/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Dist[2*(Sqrt[(-b)*(x^2/a)]/x), Subst[I
nt[x^2/(Sqrt[1 - x^4/a]*(b*c - a*d + d*x^4)), x], x, (a + b*x^2)^(1/4)], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0]

Rule 455

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 504

Int[(x_)^2/(((a_) + (b_.)*(x_)^4)*Sqrt[(c_) + (d_.)*(x_)^4]), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s
 = Denominator[Rt[-a/b, 2]]}, Dist[s/(2*b), Int[1/((r + s*x^2)*Sqrt[c + d*x^4]), x], x] - Dist[s/(2*b), Int[1/
((r - s*x^2)*Sqrt[c + d*x^4]), x], x]] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 551

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1/(a*Sqr
t[c]*Sqrt[e]*Rt[-d/c, 2]))*EllipticPi[b*(c/(a*d)), ArcSin[Rt[-d/c, 2]*x], c*(f/(d*e))], x] /; FreeQ[{a, b, c,
d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-f/e, -d/c])

Rule 749

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((a + c*x^2)^p/(e
*(m + 2*p + 1))), x] + Dist[2*(p/(e*(m + 2*p + 1))), Int[(d + e*x)^m*Simp[a*e - c*d*x, x]*(a + c*x^2)^(p - 1),
 x], x] /; FreeQ[{a, c, d, e, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !Ration
alQ[m] || LtQ[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 760

Int[1/(((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(1/4)), x_Symbol] :> Dist[d, Int[1/((d^2 - e^2*x^2)*(a + c*x^
2)^(1/4)), x], x] - Dist[e, Int[x/((d^2 - e^2*x^2)*(a + c*x^2)^(1/4)), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ
[c*d^2 + a*e^2, 0]

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 1227

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[(-a)*c, 2]}, Dist[Sqrt[-c],
 Int[1/((d + e*x^2)*Sqrt[q + c*x^2]*Sqrt[q - c*x^2]), x], x]] /; FreeQ[{a, c, d, e}, x] && GtQ[a, 0] && LtQ[c,
 0]

Rule 3593

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[d^(2*
IntPart[m/2])*((d*Sec[e + f*x])^(2*FracPart[m/2])/(b*f*(Sec[e + f*x]^2)^FracPart[m/2])), Subst[Int[(a + x)^n*(
1 + x^2/b^2)^(m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && NeQ[a^2 + b^2, 0] &&
 !IntegerQ[m/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (d^2 (d \sec (e+f x))^{3/2}\right ) \text {Subst}\left (\int \frac {\left (1+\frac {x^2}{b^2}\right )^{3/4}}{a+x} \, dx,x,b \tan (e+f x)\right )}{b f \sec ^2(e+f x)^{3/4}} \\ & = \frac {2 d^2 (d \sec (e+f x))^{3/2}}{3 b f}+\frac {\left (d^2 (d \sec (e+f x))^{3/2}\right ) \text {Subst}\left (\int \frac {1-\frac {a x}{b^2}}{(a+x) \sqrt [4]{1+\frac {x^2}{b^2}}} \, dx,x,b \tan (e+f x)\right )}{b f \sec ^2(e+f x)^{3/4}} \\ & = \frac {2 d^2 (d \sec (e+f x))^{3/2}}{3 b f}-\frac {\left (a d^2 (d \sec (e+f x))^{3/2}\right ) \text {Subst}\left (\int \frac {1}{\sqrt [4]{1+\frac {x^2}{b^2}}} \, dx,x,b \tan (e+f x)\right )}{b^3 f \sec ^2(e+f x)^{3/4}}+\frac {\left (\left (1+\frac {a^2}{b^2}\right ) d^2 (d \sec (e+f x))^{3/2}\right ) \text {Subst}\left (\int \frac {1}{(a+x) \sqrt [4]{1+\frac {x^2}{b^2}}} \, dx,x,b \tan (e+f x)\right )}{b f \sec ^2(e+f x)^{3/4}} \\ & = \frac {2 d^2 (d \sec (e+f x))^{3/2}}{3 b f}-\frac {2 a d^2 \cos (e+f x) (d \sec (e+f x))^{3/2} \sin (e+f x)}{b^2 f}+\frac {\left (a d^2 (d \sec (e+f x))^{3/2}\right ) \text {Subst}\left (\int \frac {1}{\left (1+\frac {x^2}{b^2}\right )^{5/4}} \, dx,x,b \tan (e+f x)\right )}{b^3 f \sec ^2(e+f x)^{3/4}}-\frac {\left (\left (1+\frac {a^2}{b^2}\right ) d^2 (d \sec (e+f x))^{3/2}\right ) \text {Subst}\left (\int \frac {x}{\left (a^2-x^2\right ) \sqrt [4]{1+\frac {x^2}{b^2}}} \, dx,x,b \tan (e+f x)\right )}{b f \sec ^2(e+f x)^{3/4}}+\frac {\left (a \left (1+\frac {a^2}{b^2}\right ) d^2 (d \sec (e+f x))^{3/2}\right ) \text {Subst}\left (\int \frac {1}{\left (a^2-x^2\right ) \sqrt [4]{1+\frac {x^2}{b^2}}} \, dx,x,b \tan (e+f x)\right )}{b f \sec ^2(e+f x)^{3/4}} \\ & = \frac {2 d^2 (d \sec (e+f x))^{3/2}}{3 b f}+\frac {2 a d^2 E\left (\left .\frac {1}{2} \arctan (\tan (e+f x))\right |2\right ) (d \sec (e+f x))^{3/2}}{b^2 f \sec ^2(e+f x)^{3/4}}-\frac {2 a d^2 \cos (e+f x) (d \sec (e+f x))^{3/2} \sin (e+f x)}{b^2 f}-\frac {\left (\left (1+\frac {a^2}{b^2}\right ) d^2 (d \sec (e+f x))^{3/2}\right ) \text {Subst}\left (\int \frac {1}{\left (a^2-x\right ) \sqrt [4]{1+\frac {x}{b^2}}} \, dx,x,b^2 \tan ^2(e+f x)\right )}{2 b f \sec ^2(e+f x)^{3/4}}+\frac {\left (2 a \left (1+\frac {a^2}{b^2}\right ) d^2 \cot (e+f x) (d \sec (e+f x))^{3/2} \sqrt {-\tan ^2(e+f x)}\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {1-x^4} \left (1+\frac {a^2}{b^2}-x^4\right )} \, dx,x,\sqrt [4]{\sec ^2(e+f x)}\right )}{b^2 f \sec ^2(e+f x)^{3/4}} \\ & = \frac {2 d^2 (d \sec (e+f x))^{3/2}}{3 b f}+\frac {2 a d^2 E\left (\left .\frac {1}{2} \arctan (\tan (e+f x))\right |2\right ) (d \sec (e+f x))^{3/2}}{b^2 f \sec ^2(e+f x)^{3/4}}-\frac {2 a d^2 \cos (e+f x) (d \sec (e+f x))^{3/2} \sin (e+f x)}{b^2 f}-\frac {\left (2 \left (1+\frac {a^2}{b^2}\right ) b d^2 (d \sec (e+f x))^{3/2}\right ) \text {Subst}\left (\int \frac {x^2}{a^2+b^2-b^2 x^4} \, dx,x,\sqrt [4]{\sec ^2(e+f x)}\right )}{f \sec ^2(e+f x)^{3/4}}+\frac {\left (a \left (1+\frac {a^2}{b^2}\right ) d^2 \cot (e+f x) (d \sec (e+f x))^{3/2} \sqrt {-\tan ^2(e+f x)}\right ) \text {Subst}\left (\int \frac {1}{\left (\sqrt {a^2+b^2}-b x^2\right ) \sqrt {1-x^4}} \, dx,x,\sqrt [4]{\sec ^2(e+f x)}\right )}{b f \sec ^2(e+f x)^{3/4}}-\frac {\left (a \left (1+\frac {a^2}{b^2}\right ) d^2 \cot (e+f x) (d \sec (e+f x))^{3/2} \sqrt {-\tan ^2(e+f x)}\right ) \text {Subst}\left (\int \frac {1}{\left (\sqrt {a^2+b^2}+b x^2\right ) \sqrt {1-x^4}} \, dx,x,\sqrt [4]{\sec ^2(e+f x)}\right )}{b f \sec ^2(e+f x)^{3/4}} \\ & = \frac {2 d^2 (d \sec (e+f x))^{3/2}}{3 b f}+\frac {2 a d^2 E\left (\left .\frac {1}{2} \arctan (\tan (e+f x))\right |2\right ) (d \sec (e+f x))^{3/2}}{b^2 f \sec ^2(e+f x)^{3/4}}-\frac {2 a d^2 \cos (e+f x) (d \sec (e+f x))^{3/2} \sin (e+f x)}{b^2 f}-\frac {\left (\left (1+\frac {a^2}{b^2}\right ) d^2 (d \sec (e+f x))^{3/2}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a^2+b^2}-b x^2} \, dx,x,\sqrt [4]{\sec ^2(e+f x)}\right )}{f \sec ^2(e+f x)^{3/4}}+\frac {\left (\left (1+\frac {a^2}{b^2}\right ) d^2 (d \sec (e+f x))^{3/2}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a^2+b^2}+b x^2} \, dx,x,\sqrt [4]{\sec ^2(e+f x)}\right )}{f \sec ^2(e+f x)^{3/4}}+\frac {\left (a \left (1+\frac {a^2}{b^2}\right ) d^2 \cot (e+f x) (d \sec (e+f x))^{3/2} \sqrt {-\tan ^2(e+f x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+x^2} \left (\sqrt {a^2+b^2}-b x^2\right )} \, dx,x,\sqrt [4]{\sec ^2(e+f x)}\right )}{b f \sec ^2(e+f x)^{3/4}}-\frac {\left (a \left (1+\frac {a^2}{b^2}\right ) d^2 \cot (e+f x) (d \sec (e+f x))^{3/2} \sqrt {-\tan ^2(e+f x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+x^2} \left (\sqrt {a^2+b^2}+b x^2\right )} \, dx,x,\sqrt [4]{\sec ^2(e+f x)}\right )}{b f \sec ^2(e+f x)^{3/4}} \\ & = \frac {2 d^2 (d \sec (e+f x))^{3/2}}{3 b f}+\frac {\left (a^2+b^2\right )^{3/4} d^2 \arctan \left (\frac {\sqrt {b} \sqrt [4]{\sec ^2(e+f x)}}{\sqrt [4]{a^2+b^2}}\right ) (d \sec (e+f x))^{3/2}}{b^{5/2} f \sec ^2(e+f x)^{3/4}}-\frac {\left (a^2+b^2\right )^{3/4} d^2 \text {arctanh}\left (\frac {\sqrt {b} \sqrt [4]{\sec ^2(e+f x)}}{\sqrt [4]{a^2+b^2}}\right ) (d \sec (e+f x))^{3/2}}{b^{5/2} f \sec ^2(e+f x)^{3/4}}+\frac {2 a d^2 E\left (\left .\frac {1}{2} \arctan (\tan (e+f x))\right |2\right ) (d \sec (e+f x))^{3/2}}{b^2 f \sec ^2(e+f x)^{3/4}}-\frac {2 a d^2 \cos (e+f x) (d \sec (e+f x))^{3/2} \sin (e+f x)}{b^2 f}-\frac {a \sqrt {a^2+b^2} d^2 \cot (e+f x) \operatorname {EllipticPi}\left (-\frac {b}{\sqrt {a^2+b^2}},\arcsin \left (\sqrt [4]{\sec ^2(e+f x)}\right ),-1\right ) (d \sec (e+f x))^{3/2} \sqrt {-\tan ^2(e+f x)}}{b^3 f \sec ^2(e+f x)^{3/4}}+\frac {a \sqrt {a^2+b^2} d^2 \cot (e+f x) \operatorname {EllipticPi}\left (\frac {b}{\sqrt {a^2+b^2}},\arcsin \left (\sqrt [4]{\sec ^2(e+f x)}\right ),-1\right ) (d \sec (e+f x))^{3/2} \sqrt {-\tan ^2(e+f x)}}{b^3 f \sec ^2(e+f x)^{3/4}} \\ \end{align*}

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(11117\) vs. \(2(456)=912\).

Time = 90.48 (sec) , antiderivative size = 11117, normalized size of antiderivative = 24.38 \[ \int \frac {(d \sec (e+f x))^{7/2}}{a+b \tan (e+f x)} \, dx=\text {Result too large to show} \]

[In]

Integrate[(d*Sec[e + f*x])^(7/2)/(a + b*Tan[e + f*x]),x]

[Out]

Result too large to show

Maple [B] (warning: unable to verify)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 31612 vs. \(2 (421 ) = 842\).

Time = 33.06 (sec) , antiderivative size = 31613, normalized size of antiderivative = 69.33

method result size
default \(\text {Expression too large to display}\) \(31613\)

[In]

int((d*sec(f*x+e))^(7/2)/(a+b*tan(f*x+e)),x,method=_RETURNVERBOSE)

[Out]

result too large to display

Fricas [F(-1)]

Timed out. \[ \int \frac {(d \sec (e+f x))^{7/2}}{a+b \tan (e+f x)} \, dx=\text {Timed out} \]

[In]

integrate((d*sec(f*x+e))^(7/2)/(a+b*tan(f*x+e)),x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {(d \sec (e+f x))^{7/2}}{a+b \tan (e+f x)} \, dx=\text {Timed out} \]

[In]

integrate((d*sec(f*x+e))**(7/2)/(a+b*tan(f*x+e)),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(d \sec (e+f x))^{7/2}}{a+b \tan (e+f x)} \, dx=\int { \frac {\left (d \sec \left (f x + e\right )\right )^{\frac {7}{2}}}{b \tan \left (f x + e\right ) + a} \,d x } \]

[In]

integrate((d*sec(f*x+e))^(7/2)/(a+b*tan(f*x+e)),x, algorithm="maxima")

[Out]

integrate((d*sec(f*x + e))^(7/2)/(b*tan(f*x + e) + a), x)

Giac [F]

\[ \int \frac {(d \sec (e+f x))^{7/2}}{a+b \tan (e+f x)} \, dx=\int { \frac {\left (d \sec \left (f x + e\right )\right )^{\frac {7}{2}}}{b \tan \left (f x + e\right ) + a} \,d x } \]

[In]

integrate((d*sec(f*x+e))^(7/2)/(a+b*tan(f*x+e)),x, algorithm="giac")

[Out]

integrate((d*sec(f*x + e))^(7/2)/(b*tan(f*x + e) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(d \sec (e+f x))^{7/2}}{a+b \tan (e+f x)} \, dx=\int \frac {{\left (\frac {d}{\cos \left (e+f\,x\right )}\right )}^{7/2}}{a+b\,\mathrm {tan}\left (e+f\,x\right )} \,d x \]

[In]

int((d/cos(e + f*x))^(7/2)/(a + b*tan(e + f*x)),x)

[Out]

int((d/cos(e + f*x))^(7/2)/(a + b*tan(e + f*x)), x)